Chapter 11 Probabilistic Method

Definition A probability space is a triple (Ω, Σ, P) , where Ω is a set, $\Sigma \subseteq 2^{\Omega}$ is a σ -algebra on Ω (a collection of subsets containing Ω and closed on complements, countable unions and countable intersections), and P is a countably additive measure on Σ with $P[\Omega] = 1$. The elements of Σ are called events and the elements of Ω are called elementary events. For an event A, P[A] is called the probability of A.

We will consider Ω finite and $\Sigma = 2^{\Omega}$ in our examples later.

1: Give an example of (Ω, Σ, P) .

2: Why is P on Σ and not on Ω ?

3: Show that for any collection of events A_1, \ldots, A_n ,

$$\mathbf{P}\left[\bigcup_{i=1}^{n} A_{i}\right] \leq \sum_{i=1}^{n} \mathbf{P}(A_{i}).$$

Events A, B are independent if $P[A \cap B] = P[A]P[B]$. More generally, events A_1, \ldots, A_n are independent if for any subset of indices $I \subseteq [n]$

$$\mathbf{P}\left[\bigcap_{i\in I}A_i\right] = \prod_{i\in I}\mathbf{P}[A_i].$$

4: Find three events A_1 , A_2 and A_3 that are pairwise independent but not mutually independent. (You need to say what is (Ω, Σ, P) as well.) *Hint:* $\Omega = \{a, b, c, d\}$ and $P[x] = \frac{1}{4}$ for each $x \in \Omega$ could work. For events A and B with P[B] > 0, we define the conditional probability of A, given that B occurs, as

$$\mathbf{P}[A|B] = \frac{\mathbf{P}[A \cap B]}{\mathbf{P}(B)}.$$

5: Simplify the formula for independent events A and B.

A real random variable on a probability space (Ω, Σ, P) is a function $X : \Omega \to \mathbb{R}$ that is P-measurable. (That is, for any $a \in \mathbb{B}, \{\omega \in \Omega : X(\omega) \le a\} \in \Sigma$.)

We use Ω discrete, so no trouble with measurable in our case.

Expectation for finite Ω can be expressed as $E[X] = \sum_{\omega \in \Omega} P[\omega] X(\omega)$.

Real random variables X, Y are independent if for every two measurable sets $A, B \subseteq \mathbb{R}$,

$$P[X \in A \text{ and } Y \in B] = P[X \in A] \cdot P[Y \in B].$$

For verification, it is enough to check

$$P[X \le a \text{ and } Y \le b] = P[X \le a] \cdot P[Y \le b].$$

6: What is $P[X \in A]$?

7: Show the following for a finite probability space. If X and Y are independent random variables, then $E[XY] = E[X] \cdot E[Y]$.

2-coloring hypergraphs - Construct something random.

A k-uniform hypergraph (V, E) has V as a set of vertices and edges $E \subseteq \binom{V}{k}$. That is, edges are k-subsets.

A hypergraph is c-colorable if its vertices can be colored with c colors so that no edge is monochromatic i.e., at least two different colors appear in every edge.

Let m(k) denote the smallest number of edges in a k-uniform hypergraph that is not 2-colorable.

8: What is m(2)?

9: Use probabilistic method to show that for any $k \ge 2$,

 $m(k) > 2^{k-1}.$

Hint: Union bound.

 $E[x] = \sum_{x \to p(x)} x \cdot p(x)$

Linearity of Expectation

Linearity of Expectation Let X_1, \dots, X_n be random variables, $X = c_1 X_1 + \dots + c_n X_n$, then

$$\mathbb{E}[X] = c_1 \mathbb{E}[X_1] + \dots + c_n \mathbb{E}[X_n].$$

Definition For an event A, the indicator random variable I_A has value 1 if event A occurs and has value 0 $E[I_A] = P_r(A)$ otherwise.

10: Calculate the expected number of fixed points of random permutaion σ on $\{1, \ldots, n\}$, i.e., the number of i such that $\sigma(i) = i$.

ⓒ⊙⊙⊙ by Bernard Lidický, somewhat following Vondrák, Matoušek.

11: Show that there is a tournament on n vertices that has at least $\frac{n!}{2^{n-1}}$ Hamiltonian paths. Remark: Alon(1990) proved that the maximum number of Hamiltonian paths is at most $cn^{3/2} \frac{n!}{2^{n-1}}$.

tournament n vertices is an orientation of K. 4 Hamiltonian path is a path that Seas and the corresponding path $\sigma(i), \sigma(2), ..., \sigma(n)$ The probability this is Hemiltonian is $(1/2)^{n-1}$ let $X = \sum_{i=1}^{n} X_{i}$ the vertices. $\mathbb{E}[X] = \mathbb{E}[X_{\sigma}] = \underline{n!}$ 3 on instance 12: Show that any graph G with e edges contains a bipartite subgraph with at least e/2 edges. Hint: randomly partition vertices into two parts. $\geq \frac{n!}{2^{n-r}}$ H.P. Construct a partition V=AUB, where $Pr(v \in A) = \frac{1}{2}$ $\forall v \in V.$ Let Xur be the event un is a crossing edge let X=ZXuv $\mathbb{E}[\chi_{m}](=z)$ E[X] = ZE[Xuv] = ± IE(G)]. So 3 a partition WIZE CHOSENE The above result can be improved:

13: Show that if G has 2n vertices and e edges, then it contains a bipartite subgraph with at least $\frac{n}{2n-1}e$ edges. If G has 2n + 1 vertices and e edges, then it contains a bipartite subgraph with at least $\frac{n+1}{2n+1}e$ edges PIN

14: Given vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with $|v_i| = 1$. Show that there exist $\varepsilon_1, \ldots, \varepsilon_n = \pm 1$ such that

 $|\varepsilon_1 v_1 + \dots + \varepsilon_n v_n| \le \sqrt{n}, \qquad \text{Viscrepany}$

and also there exist $\varepsilon_1, \ldots, \varepsilon_n = \pm 1$ such that

$$|\varepsilon_1 v_1 + \dots + \varepsilon_n v_n| \ge \sqrt{n}.$$

 $\mathbb{E}\left(\left|\mathcal{E}_{1}\mathcal{V}_{1}+\cdots+\mathcal{E}_{n}\mathcal{V}_{n}\right|^{2}\right)=n$ Hint: pick ε_i randomly And show

©€\$③ by Bernard Lidický, somewhat following Vondrák, Matoušek.

15: Given vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with $|v_i| \leq 1$. Let $p_1, \ldots, p_n \in [0, 1]$ be arbitrary, and set $w = p_1 v_1 + \cdots + p_n v_n$. Then there exist $\varepsilon_1, \ldots, \varepsilon_n \in \{0, 1\}$ so that set $v = \varepsilon_1 v_1 + \cdots + \varepsilon_n v_n$, we have

16: Let *F* be a family of subsets of $[n] = \{1, \ldots, n\}$ such that there are no $A, B \in F$ satisfying $A \subset B$. Let σ be a random permutation of [n]. Consider the random variable $X = |\{i : \{\sigma(1), \sigma(2), \ldots, \sigma(i)\} \in F\}|$. Prove $|F| \leq {n \choose n/2}$ by considering the expectation of *X*.

Sperner's Theorem for antichains in posets. $X \leq I$ $E[X] \leq ($ $Pr(A \in chosen) = \frac{|A|!(n-|A|)!}{n!} = {\binom{n}{1}}^{-1} \geq {\binom{n}{1}}^{-1}$ $IF[\binom{n}{1}]^{-1} \leq E[X] \leq 1$

©€\$③ by Bernard Lidický, somewhat following Vondrák, Matoušek.

Some estimates:

17: (Bonus) Let $(\Omega, 2^{\Omega}, P)$ be a finite probability space, where all elementary events have the same probability. Show that if $|\Omega|$ is a prime, then there does not exist a pair of non-trivial independent events. Trivial events are \emptyset and Ω .

©€\$© by Bernard Lidický, somewhat following Vondrák, Matoušek.